Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 329: 138674, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37054845

RESUMO

Starting from 1952 C.E. more than 540 atmospheric nuclear weapons tests (NWT) were conducted in different locations of the Earth. This lead to the injection of about 2.8 t of 239Pu in the environment, roughly corresponding to a total 239Pu radioactivity of 6.5 PBq. A semiquantitative ICP-MS method was used to measure this isotope in an ice core drilled in Dome C (East Antarctica). The age scale for the ice core studied in this work was built by searching for well-known volcanic signatures and synchronising these sulfate spikes with established ice core chronologies. The reconstructed plutonium deposition history was compared with previously published NWT records, pointing out an overall agreement. The geographical location of the tests was found to be an important parameter strongly affecting the concentration of 239Pu on the Antarctic ice sheet. Despite the low yield of the tests conducted in the 1970s, we highlight their important role in the deposition of radioactivity in Antarctica due to the relative closeness of the testing sites.


Assuntos
Armas Nucleares , Plutônio , Cinza Radioativa , Cinza Radioativa/análise , Regiões Antárticas , Plutônio/análise , Camada de Gelo
2.
Sci Total Environ ; 879: 163070, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-36990237

RESUMO

The study of airborne chemical markers is crucial for identifying sources of aerosols, and their atmospheric processes of transport and transformation. The investigation of free amino acids and their differentiation between the L- and D- enantiomers are even more important to understand their sources and atmospheric fate. Aerosol samples were collected with a high-volume sampler with cascade impactor at Mario Zucchelli Station (MZS) on the coast of the Ross Sea (Antarctica) for two summer campaigns (2018/19 and 2019/20). The total mean concentration of free amino acids in PM10 was 4 ± 2 pmol m-3 for both campaigns and most of free amino acids were distributed in fine particles. The coarse mode of airborne D-Alanine and dimethylsufoniopropionate in seawater showed a similar trend during both Antarctic campaigns. Thus, the study of D/L Ala ratio in fine, coarse and PM10 fractions indicated the microlayer as the local source. This paper demonstrated that free amino acids follow the trend of DMS and MSA release occurred in the Ross Sea, confirming their applicability as markers for phytoplankton bloom also in paleoclimatic studies.

3.
Environ Sci Technol ; 56(16): 11189-11198, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35878000

RESUMO

Atmospheric aerosols are important drivers of Arctic climate change through aerosol-cloud-climate interactions. However, large uncertainties remain on the sources and processes controlling particle numbers in both fine and coarse modes. Here, we applied a receptor model and an explainable machine learning technique to understand the sources and drivers of particle numbers from 10 nm to 20 µm in Svalbard. Nucleation, biogenic, secondary, anthropogenic, mineral dust, sea salt and blowing snow aerosols and their major environmental drivers were identified. Our results show that the monthly variations in particles are highly size/source dependent and regulated by meteorology. Secondary and nucleation aerosols are the largest contributors to potential cloud condensation nuclei (CCN, particle number with a diameter larger than 40 nm as a proxy) in the Arctic. Nonlinear responses to temperature were found for biogenic, local dust particles and potential CCN, highlighting the importance of melting sea ice and snow. These results indicate that the aerosol factors will respond to rapid Arctic warming differently and in a nonlinear fashion.


Assuntos
Poluentes Atmosféricos , Aerossóis/análise , Poluentes Atmosféricos/análise , Poeira/análise , Aprendizado de Máquina , Tamanho da Partícula , Svalbard
4.
Nat Geosci ; 15(3): 196-202, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35341076

RESUMO

Aerosols play an important yet uncertain role in modulating the radiation balance of the sensitive Arctic atmosphere. Organic aerosol is one of the most abundant, yet least understood, fractions of the Arctic aerosol mass. Here we use data from eight observatories that represent the entire Arctic to reveal the annual cycles in anthropogenic and biogenic sources of organic aerosol. We show that during winter, the organic aerosol in the Arctic is dominated by anthropogenic emissions, mainly from Eurasia, which consist of both direct combustion emissions and long-range transported, aged pollution. In summer, the decreasing anthropogenic pollution is replaced by natural emissions. These include marine secondary, biogenic secondary and primary biological emissions, which have the potential to be important to Arctic climate by modifying the cloud condensation nuclei properties and acting as ice-nucleating particles. Their source strength or atmospheric processing is sensitive to nutrient availability, solar radiation, temperature and snow cover. Our results provide a comprehensive understanding of the current pan-Arctic organic aerosol, which can be used to support modelling efforts that aim to quantify the climate impacts of emissions in this sensitive region.

5.
Sci Total Environ ; 810: 151285, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34740657

RESUMO

Ten years of data of biogenic aerosol (methane sulfonic acid, MSA, and non-sea salt sulfate, nssSO42-) collected at Concordia Station in the East Antarctic plateau (75° 06' S, 123° 20' E) are interpreted as a function of the Southern Annular Mode (SAM), Chlorophyll-a concentration (Chl-a; a proxy for phytoplankton biomass), sea ice extent and area. It is possible to draw three different scenarios that link these parameters in early, middle, and late summer. In early summer, the biogenic aerosol is significantly correlated to sea ice retreats through the phytoplankton biomass increases. Chl-a shows a significant correlation with nssSO42- in the finest fraction (< 1 µm). In contrast, only Chl-a in West Pacific and Indian Ocean sectors correlates with MSA in the coarse fraction. The transport routes towards the inner Antarctic plateau and aerosol formation processes could explain the different correlation patterns of the two compounds both resulting from the DMS oxidation. In mid-summer, Chl-a concentrations are at the maximum and are not related to sea ice melting. Due to the complexity of transport processes of air masses towards the Antarctic plateau, the MSA concentrations are low and not related to Chl-a concentration. In late summer, MSA and nssSO42- present the highest concentrations in their submicrometric aerosol fraction, and both are significantly correlated with Chl-a but not with the sea ice. In early and mid-summer, the enhanced efficiency of transport processes from all the surrounding oceanic sectors with air masses traveling at low elevation can explain the highest concentrations of nssSO42- and especially MSA. Finally, considering the entire time series, MSA shows significant year-to-year variability. This variability is significantly correlated with SAM but with a different time lag in early (0-month lag) and late summer (4-months lag). This correlation likely occurs through the effect of the SAM on phytoplankton blooms.


Assuntos
Atmosfera , Água do Mar , Aerossóis , Regiões Antárticas , Oceano Índico , Estações do Ano
6.
Adv Sci (Weinh) ; 8(4): 2001175, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33643785

RESUMO

Near infrared (NIR)-resonant gold nanoparticles (AuNPs) hold great promise in cancer diagnostics and treatment. However, translating the theranostic potential of AuNPs into clinical applications still remains a challenge due to the difficulty to improve the efficiency and specificity of tumor delivery in vivo as well as the clearance from liver and spleen to avoid off target toxicity. In this study, endothelial colony forming cells (ECFCs) are exploited as vehicles to deliver AuNPs to tumors. It is first demonstrated that ECFCs display a great capability to intake AuNPs without losing viability, and exert antitumor activity per se. Using a human melanoma xenograft mouse model, it is next demonstrated that AuNP-loaded ECFCs retain their capacity to migrate to tumor sites in vivo 1 day after injection and stay in the tumor mass for more than 1 week. In addition, it is demonstrated that ECFC-loaded AuNPs are efficiently cleared by the liver over time and do not elicit any sign of damage to healthy tissue.

7.
Sci Total Environ ; 741: 140511, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32887016

RESUMO

Ship traffic, population, infrastructure development, and mining activities are expected to increase in the Arctic due to its rising temperatures. This is expected to produce a major impact on aerosol composition. Metals contained in atmospheric particles are powerful markers and can be extremely helpful to gain insights on the different aerosol sources. This work aims at studying the sources of metals in the Arctic aerosol sampled at the Thule High Arctic Atmospheric Observatory (THAAO; Greenland, 76.5°N 68.8°W). Due to the particular composition of Greenlandic soils and to properties of other sources, it was possible to find several signatures of natural and anthropogenic aerosols transported from local and long-range regions. Arctic haze (AH) at Thule builds up on long-range transported aerosol mainly from Canada and Nord America. From a chemical standpoint, this aerosol is characterized by a high concentration of sulfate, Pb, As and Cd and by a La/Ce ratio larger than 1. The Ti/Al and Fe/Al ratios in the AH aerosol are lower (Ti/Al = 0.04 w/w; Fe/Al = 0.79 w/w) than for local aerosol (Ti/Al = 0.07 w/w; Fe/Al = 0.89 w/w). Conversely, aerosol arising from coastal areas of South-West Greenland is characterized by a high concentration of V, Ni, and Cr. These metals, generally considered anthropogenic, arise here mainly from natural crustal sources. In some summer samples, however, the V/Ni ratio becomes larger than 3. In particular, cases displaying this characteristic ratio, as also shown by backward trajectories, are associated with sporadic transport to Thule of ship aerosol from ships passing through Baffin Bay and arriving to Thule during summer. Although further measurements are necessary to confirm the discussed results, the analysis carried out in this work on a large number of metals sampled in coastal Greenland aerosol is unprecedented.

8.
Sensors (Basel) ; 20(7)2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32235527

RESUMO

The Arctic is an important natural laboratory that is extremely sensitive to climatic changes and its monitoring is, therefore, of great importance. Due to the environmental extremes it is often hard to deploy sensors and observations are limited to a few sparse observation points limiting the spatial and temporal coverage of the Arctic measurement. Given these constraints the possibility of deploying a rugged network of low-cost sensors remains an interesting and convenient option. The present work validates for the first time a low-cost sensor array (AIRQino) for monitoring basic meteorological parameters and atmospheric composition in the Arctic (air temperature, relative humidity, particulate matter, and CO2). AIRQino was deployed for one year in the Svalbard archipelago and its outputs compared with reference sensors. Results show good agreement with the reference meteorological parameters (air temperature (T) and relative humidity (RH)) with correlation coefficients above 0.8 and small absolute errors (≈1 °C for temperature and ≈6% for RH). Particulate matter (PM) low-cost sensors show a good linearity (r2 ≈ 0.8) and small absolute errors for both PM2.5 and PM10 (≈1 µg m-3 for PM2.5 and ≈3 µg m-3 for PM10), while overall accuracy is impacted both by the unknown composition of the local aerosol, and by high humidity conditions likely generating hygroscopic effects. CO2 exhibits a satisfying agreement with r2 around 0.70 and an absolute error of ≈23 mg m-3. Overall these results, coupled with an excellent data coverage and scarce need of maintenance make the AIRQino or similar devices integrations an interesting tool for future extended sensor networks also in the Arctic environment.

9.
Sci Total Environ ; 613-614: 1284-1294, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28968931

RESUMO

An inductively coupled plasma sector field mass spectrometer (ICP-SFMS) was used to develop an analytical method for the fast determination of Na, Al, Sc, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Y, Mo, Cd, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Pb in Arctic size-segregated aerosol samples (PM10), after microwave acidic digestion. The ICP-SFMS was coupled with a microflow nebulizer and a desolvation system for the sample introduction, which reduced the isobaric interferences due to oxides and the required volume of sample solutions, compared to the usual nebulization chamber methods. With its very low limit of detection, and taking into account the level of blanks, this method allowed the quantification of many metals in very low concentration. Particular attention was given to Rare Earth Elements (REEs - La to Lu). The efficiency in the extraction of REEs was proved to be acceptable, with recoveries over 83% obtained with a Certified Reference Material (AMiS 0356). The analytical method was then applied to particulate matter samples, collected at ground level in Ny Ålesund (Svalbard Islands, Norway), during spring and summer, from 2010 to 2015, with daily resolution and using a low-volume device. Thus, for the first time, a large atmospheric concentrations dataset of metals in Arctic particulate matter at high temporal resolution is presented. On the basis of differences in LREE/HREE ratio and Ce and Eu anomalies in spring and summer samples, basic information to distinguish local and long-range transported dust were achieved.

10.
Sci Rep ; 7: 45257, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28349934

RESUMO

Sporadic solar energetic particle (SEP) events affect the Earth's atmosphere and environment, in particular leading to depletion of the protective ozone layer in the Earth's atmosphere, and pose potential technological and even life hazards. The greatest SEP storm known for the last 11 millennia (the Holocene) occurred in 774-775 AD, serving as a likely worst-case scenario being 40-50 times stronger than any directly observed one. Here we present a systematic analysis of the impact such an extreme event can have on the Earth's atmosphere. Using state-of-the-art cosmic ray cascade and chemistry-climate models, we successfully reproduce the observed variability of cosmogenic isotope 10Be, around 775 AD, in four ice cores from Greenland and Antarctica, thereby validating the models in the assessment of this event. We add to prior conclusions that any nitrate deposition signal from SEP events remains too weak to be detected in ice cores by showing that, even for such an extreme solar storm and sub-annual data resolution, the nitrate deposition signal is indistinguishable from the seasonal cycle. We show that such a severe event is able to perturb the polar stratosphere for at least one year, leading to regional changes in the surface temperature during northern hemisphere winters.

11.
Oncotarget ; 7(26): 39846-39860, 2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27223433

RESUMO

In the photothermal treatments (PTs) of tumor, the localization of a high number of near-infrared (NIR) absorbing gold nanoparticles in the tumor mass is still a challenging issue. Here, we propose a promising strategy to deliver therapeutic chitosan-coated gold nanoparticles to tumor cells as hidden cargo of Endothelial Colony Forming Cells (ECFCs) endowed with an innate tumor-tropism. Remarkably, ECFC gold enrichement doesn't affect cell viability and preserves the endothelial lineage characteristics such as capillary morphogenesis and cell migration. We demonstrate that heavily Au-doped ECFCs are able to efficiently warm up the tumor environment, and kill the cancer cells via hyperthermic heating both in vitro as well as in vivo. Thus, we show an excellent thermotransductive property of gold enriched ECFCs and their capability to kill melanoma cells at moderate NIR light intensities.


Assuntos
Células Endoteliais/citologia , Ouro/química , Melanoma/terapia , Nanopartículas Metálicas/química , Neoplasias Cutâneas/terapia , Animais , Movimento Celular , Sobrevivência Celular , Quitosana/química , Coloides/química , Células Endoteliais/metabolismo , Feminino , Humanos , Íons , Luz , Melanoma/metabolismo , Camundongos , Camundongos Nus , Invasividade Neoplásica , Neovascularização Fisiológica , Fotoquímica , Receptores CXCR4/metabolismo , Neoplasias Cutâneas/metabolismo , Microambiente Tumoral
12.
Sci Total Environ ; 550: 418-430, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26849319

RESUMO

Five snow pits and five firn cores were sampled during the 2003-2004 Italian Antarctic Campaign at Talos Dome (East Antarctica), where a deep ice core (TALDICE, TALos Dome Ice CorE, 1650m depth) was drilled in 2005-2008 and analyzed for ionic content. Particular attention is spent in applying decontamination procedures to the firn cores, as core sections were stored for approximately 10years before analysis. By considering the snow pit samples to be unperturbed, the comparison with firn core samples from the same location shows that ammonium, nitrate and MSA are affected by storage post-depositional losses. All the other measured ions are confirmed to be irreversibly deposited in the snow layer. The removal of the most external layers (few centimeters) from the firn core sections is proved to be an effective decontamination procedure. High-resolution profiles of seasonal markers (nitrate, sulfate and MSA) allow a reliable stratigraphic dating and a seasonal characterization of the samples. The calculated mean accumulation-rate values range from 70 to 85mmw.e.year(-1), in the period 2003-1973 with small differences between two sectors: 70-74mmw.e.year(-1) in the NNE sector (spanning 2003-1996years) and 81-92mmw.e.year(-1) in the SSW sector (spanning 2003-1980years). This evidence is interpreted as a coupled effect of wind-driven redistribution processes in accumulation/ablation areas. Statistical treatment applied to the concentration values of the snow pits and firn cores samples collected in different points reveals a larger temporal variability than spatial one both in terms of concentration of chemical markers and annual accumulation. The low spatial variability of the accumulation rate and chemical composition measured in the five sites demonstrates that the TALDICE ice core paleo-environmental and paleo-climatic stratigraphies can be considered as reliably representative for the Talos Dome area.

13.
Anal Chem ; 87(22): 11441-7, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26494022

RESUMO

Recently, the increasing interest in the understanding of global climatic changes and on natural processes related to climate yielded the development and improvement of new analytical methods for the analysis of environmental samples. The determination of trace chemical species is a useful tool in paleoclimatology, and the techniques for the analysis of ice cores have evolved during the past few years from laborious measurements on discrete samples to continuous techniques allowing higher temporal resolution, higher sensitivity and, above all, higher throughput. Two fast ion chromatographic (FIC) methods are presented. The first method was able to measure Cl(-), NO3(-) and SO4(2-) in a melter-based continuous flow system separating the three analytes in just 1 min. The second method (called Ultra-FIC) was able to perform a single chromatographic analysis in just 30 s and the resulting sampling resolution was 1.0 cm with a typical melting rate of 4.0 cm min(-1). Both methods combine the accuracy, precision, and low detection limits of ion chromatography with the enhanced speed and high depth resolution of continuous melting systems. Both methods have been tested and validated with the analysis of several hundred meters of different ice cores. In particular, the Ultra-FIC method was used to reconstruct the high-resolution SO4(2-) profile of the last 10,000 years for the EDML ice core, allowing the counting of the annual layers, which represents a key point in dating these kind of natural archives.

14.
Chemosphere ; 138: 916-23, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25550109

RESUMO

From January to December 2010, surface snow samples were collected with monthly resolution at the Concordia station (75°06'S, 123°20'E), on the Antarctic plateau, and analysed for major and trace elements in both dissolved and particulate (i.e. insoluble particles, >0.45 µm) phase. Additional surface snow samples were collected with daily resolution, for the determination of sea-salt sodium and not-sea-salt calcium, in order to support the discussion on the seasonal variations of trace elements. Concentrations of alkaline and alkaline-earth elements were higher in winter (April-October) than in summer (November-March) by a factor of 1.2-3.3, in agreement with the higher concentration of sea-salt atmospheric particles reaching the Antarctic plateau during the winter. Similarly, trace elements were generally higher in winter by a factor of 1.2-1.5, whereas Al and Fe did not show any significant seasonal trend. Partitioning between dissolved and particulate phases did not change with the sampling period, but it depended only on the element: alkaline and alkaline-earth elements, as well as Co, Cu, Mn, Pb and Zn were for the most part (>80%) in the dissolved phase, whereas Al and Fe were mainly associated with the particulate phase (>80%) and Cd, Cr, V were nearly equally distributed between the phases. Finally, the estimated marine and crustal enrichment factors indicated that Cd, Cr, Cu, Pb and Zn have a dominant anthropogenic origin, with a possible contribution from the Concordia station activities.


Assuntos
Monitoramento Ambiental , Metais/análise , Metais/química , Neve/química , Regiões Antárticas , Estações do Ano , Oligoelementos/análise , Oligoelementos/química
15.
Environ Sci Technol ; 48(3): 1795-802, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24397469

RESUMO

Ice cores are widely used to reconstruct past changes of the climate system. For instance, the ice core record of numerous water-soluble and insoluble chemical species that are trapped in snow and ice offer the possibility to investigate past changes of various key compounds present in the atmosphere (i.e., aerosol, reactive gases). We developed a new method for the quantitative determination of fluoride in ice cores at sub-µg L(-1) levels by coupling a flow injection analysis technique with a fast ion chromatography separation based on the "heart cut" column switching technology. Sensitivity, linear range (up to 60 µg L(-1)), reproducibility, and detection limit (0.02 µg L(-1)) were evaluated for the new method. This method was successfully applied to the analysis of fluoride at trace levels in more than 450 recent snow samples collected during the 1998-1999 International Trans-Antarctica Scientific Expedition traverse in East Antarctica at sites located between 170 and 850 km from the coastline.


Assuntos
Cromatografia/métodos , Fluoretos/análise , Gelo/análise , Regiões Antárticas , Atmosfera/química , Clima , Reprodutibilidade dos Testes , Neve , Água/química
16.
Environ Sci Technol ; 43(23): 8737-43, 2009 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19943640

RESUMO

A detailed ionic component record was performed on EPICA Dome C ice core (East Antarctica) to a depth of 3190 m using Ion Chromatography and Fast Ion Chromatography (FIC). At depths greater than 2800 m, the sulfate profile shows intense, sharp spikes which are not expected due to the smoothing of sulfate peaks by diffusion processes. Moreover, these spikes show an "anomalous" chemical composition (e.g., unusually low acidity, high Mg(2+) concentration and high Mg(2+)/Ca(2+) ratio). These peaks and the surrounding layers also exhibit good Mg(2+) vs SO(4)(2-) and Cl(-) vs Na(+) correlations through both glacial and interglacial periods. Furthermore, the high-resolution analysis of two horizontally contiguous ice sections showed that some fraction of the impurities are characterized by a heterogeneous distribution. Altogether, these results suggest the occurrence of long-term postdepositional processes involving a rearrangement of impurities via migration in the vein network, characterized by sulfuric acidity and leading to the formation of soluble particles of magnesium sulfate salts, along with ionic association of ions in the liquid films along boundaries. This evidence should be taken into consideration when inferring information on for rapid climatic and environmental changes from ice core chemical records at great depths. At Dome C, the depth threshold was found to be 2800 m.


Assuntos
Camada de Gelo/química , Sulfatos/análise , Regiões Antárticas , Cromatografia , Elementos Químicos , Europa (Continente)
17.
Anal Chim Acta ; 603(2): 190-8, 2007 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-17963839

RESUMO

A method was developed for the quantitative determination of cations and anions in Antarctic ice cores at microgL(-1) and sub-microgL(-1) levels by ion chromatography (IC), after ultra-clean decontamination procedures. Strict manipulation and decontamination procedures were used in sub-sampling, in order to minimise sample contamination. Na+, NH4+, K+, Mg2+ and Ca2+ were determined by 12-min isocratic elution (H2SO4 eluent). Contemporaneously, in a parallel device, F-, MSA (methanesulfonic acid), Cl-, NO3- and SO4(2-) were analysed in a single 12-min run with multiple-step elution using Na2CO3/NaHCO3 as eluent. Melted ice samples were pumped from their still-closed containers (polystyrene accuvettes with polyethylene caps), shared between the two ion chromatographic systems, online filtered (0.45 microm Teflon membrane) and pre-concentrated (anions and cations pre-concentration columns) using a flow analysis system, thus avoiding uptake of contaminants from the laboratory atmosphere. Sensitivity, linear range, reproducibility and detection limit were evaluated for each chemical species. Anion or cation detection limits ranged from 0.01 to 0.15 microgL(-1) by using a relatively small sample volume (1.5 mL). Such values are significantly lower than those reported in literature for almost all the components. These methods were successfully applied to the analysis of cations and anions at trace levels in the Dome C ice core. The composition of the atmospheric aerosol for the last 850 kyr was reconstructed by high-resolution continuous chemical stratigraphies. Concentration trends in the last nine glacial-interglacial climatic cycles were shown and briefly discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...